Hyperbola

Hyperbola is the set of points in the plane with the attribute the difference to the distance of any point of the two given points of a constant number.

a - is a real semi-axis (2 a is the real axis)
b- is the imaginary semi-axis (the imaginary axis is 2 b)
r_{1}, r_{2} are radius vectors and for them applies: $\left|r_{1}-r_{2}\right|=2 a$
$F_{1}(-c, 0), F_{2}(c, 0)$ are gisela and $c^{2}=a^{2}+b^{2}$
$e=\frac{c}{a} \rightarrow$ the eccentricity $(\mathrm{e}>1)$
Lines $y=\frac{b}{a} x$ and $y=-\frac{b}{a} x \quad$ are the hyperbola asymptotes
The main equation is $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \quad$ or $\quad b^{2} x^{2}-a^{2} y^{2}=a^{2} b^{2}$

How to draw a hyperbola?
For example : $\frac{x^{2}}{25}-\frac{y^{2}}{16}=1$.
Comparing with $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ conclude that $a^{2}=25$ and $b^{2}=16$
From here is $a= \pm 5$ and $b= \pm 4$
Draw a rectangle :

Asymptotes are $y=\frac{b}{a} x$ and $y=-\frac{b}{a} x$, for our example $y=\frac{4}{5} x$ and $y=-\frac{4}{5} x$.
The graph asymptotes contain the diagonals of this rectangle:

Now draw the hyperbola:

Example 1.

Determine the equation of hyperbola if its semi-axis ratio is 3:4 and c=15

Solution

Use the "trick with k"
$b: a=3: 4$
$b=3 k \quad$ and $\quad c^{2}=a^{2}+b^{2} \quad$ so:
$a=4 k$
$c^{2}=a^{2}+b^{2}$
$c^{2}=(4 k)^{2}+(3 k)^{2}$
$15^{2}=16 k^{2}+9 k^{2}$
$225=25 k^{2}$
$k^{2}=\frac{225}{25}$
$k^{2}=9$
$k=3$

Let's go back to find a and b:
$b=3 k=3 \cdot 3=9 \rightarrow b^{2}=81$
$a=4 k=4 \cdot 3=12 \rightarrow a^{2}=144$
solution:
$\frac{x^{2}}{144}-\frac{y^{2}}{81}=1$

Example 2.

Determine the equation of hyperbola if the distance between the focus is $10 \sqrt{2}$, and the equations of its asymptotes are $y= \pm \frac{3}{4} x$

Solution

the distance between the focus is $2 c=10 \sqrt{2}$ so $c=5 \sqrt{2}$.
$y= \pm \frac{3}{4} x \quad$ compared with $\quad y= \pm \frac{b}{a} x \quad$ and we get $\quad \frac{b}{a}=\frac{3}{4} \rightarrow b=\frac{3}{4} a$
This substitute in $c^{2}=a^{2}+b^{2}$
$(5 \sqrt{2})^{2}=a^{2}+\left(\frac{3}{4} a\right)^{2}$
$50=a^{2}+\frac{9}{16} a^{2}$
then

$$
\begin{aligned}
& b^{2}=c^{2}-a^{2} \\
& b^{2}=50-32
\end{aligned}
$$

and solution is $\quad \frac{x^{2}}{32}-\frac{y^{2}}{18}=1$
$50=\frac{25}{16} a^{2}$

$$
b^{2}=18
$$

$$
\frac{x^{2}}{32}-\frac{y^{2}}{18}=1
$$

$a^{2}=32$

Hyperbola and line

Similarly as in the circle and ellipse, to determine the mutual position of line and hyperbola, solve the system of equations:
$y=k x+n$ and $b^{2} x^{2}-a^{2} y^{2}=a^{2} b^{2}$

- If the system has no solution, then the line and the hyperbola is not cut, that is $a^{2} k^{2}-b^{2}<n^{2}$
- If the system has two solutions, then line cut hyperbola in two points $a^{2} k^{2}-b^{2}>n^{2}$
- If the system has one solution, line is tangent, and satisfies the contact condition:

$$
a^{2} k^{2}-b^{2}=n^{2}
$$

Note

If we seek an tangent line at a given point $\left(x_{0}, y_{0}\right)$ which belongs to the hyperbola, we have formula:

$$
t: \frac{x \cdot x_{0}}{a^{2}}-\frac{y \cdot y_{0}}{b^{2}}=1
$$

Example 3.

Write the equation of tangent hyperbola $x^{2}-y^{2}=40$ in point $M(x, 9)$ belonging hyperbole.

Solution

First, we determine the coordinate x in point $\mathrm{M}(\mathrm{x}, 9)$.
$x^{2}-y^{2}=40$
$x^{2}-9^{2}=40$
$x^{2}=40+81$
$x^{2}=141$
$x=11 \vee x=-11$

So we have two points that satisfy : $(-11,9)$ and $(11,9)$
$x^{2}-y^{2}=40$
$\frac{x^{2}}{40}-\frac{y^{2}}{40}=1$

Use: $\quad t: \frac{x \cdot x_{0}}{a^{2}}-\frac{y \cdot y_{0}}{b^{2}}=1$

$$
\begin{array}{ll}
t_{1}: \frac{x \cdot(-11)}{40}-\frac{y \cdot 9}{40}=1 & t_{2}: \frac{x \cdot 11}{40}-\frac{y \cdot 9}{40}=1 \\
t_{1}:-11 x-9 y=40 & t_{2}: 11 x-9 y=40 \\
t_{1}:-11 x-9 y-40=0 & t_{2}: 11 x-9 y-40=0
\end{array}
$$

Example 4.

Write the equation of hyperbola if known equation of its tangent line: $5 x-7 y-1=0$ and $x-y-1=0$

Solution

Tangent must satisfy the contact condition : $a^{2} k^{2}-b^{2}=n^{2}$.
Shift tangent line in the explicit form:
$5 x-7 y-1=0$
$-7 y=-5 x+1 \ldots /:(-7)$

$$
x-y-1=0
$$

$y=\frac{5}{7} x-\frac{1}{7}$

$$
-y=-x+1
$$

$k=\frac{5}{7}$
and
and $\quad y=x-1$
$k=1$
$n=-1$
$n=-\frac{1}{7}$
$a^{2} k^{2}-b^{2}=n^{2}$
$a^{2}\left(\frac{5}{7}\right)^{2}-b^{2}=\left(-\frac{1}{7}\right)^{2}$
and $\quad a^{2} 1^{2}-b^{2}=(-1)^{2}$
$a^{2} \frac{25}{49}-b^{2}=\frac{1}{49}$
$a^{2}-b^{2}=1$
$25 a^{2}-49 b^{2}=1$
Now create a system:
$a^{2}-b^{2}=1$
$\underline{25 a^{2}-49 b^{2}=1}$
$a^{2}=b^{2}+1$
$25\left(b^{2}+1\right)-49 b^{2}=1$
and solution is: $\quad \frac{x^{2}}{2}-\frac{y^{2}}{1}=1$
$25 b^{2}+25-49 b^{2}=1$
$-24 b^{2}=-24$
$b^{2}=1 \rightarrow a^{2}=b^{2}+1 \rightarrow a^{2}=2$
Example 5.
Determine the angle under which the curves intersect $3 x^{2}+4 y^{2}=84$ and $3 x^{2}-4 y^{2}=12$.

Solution

First, find the intersection point by solving the system of equations:
$3 x^{2}+4 y^{2}=84$
$3 x^{2}-4 y^{2}=12$
$6 x^{2}=96$
$x^{2}=16$
$x_{1}=4 \rightarrow 3 \cdot 4^{2}+4 y^{2}=84 \rightarrow 4 y^{2}=84-48 \rightarrow 4 y^{2}=16 \rightarrow y^{2}=4 \rightarrow y= \pm 2$
$x_{2}=-4 \rightarrow 3 \cdot(-4)^{2}+4 y^{2}=84 \rightarrow 4 y^{2}=84-48 \rightarrow 4 y^{2}=16 \rightarrow y^{2}=4 \rightarrow y= \pm 2$
Cut in:
$(4,2) ;(4,-2) ;(-4,2) ;(-4,-2)$

Angle under which the curves intersect is the angle between tangents in one of the points of intersection!
We will take the point $(4,2)$ and it set the tangent to the ellipse and hyperbola
$t_{e}: \frac{x \cdot x_{0}}{a^{2}}+\frac{y \cdot y_{0}}{b^{2}}=1$
and
$t_{h}: \frac{x \cdot x_{0}}{a^{2}}-\frac{y \cdot y_{0}}{b^{2}}=1$
$3 x^{2}+4 y^{2}=84$
$\frac{3 x^{2}}{84}+\frac{4 y^{2}}{84}=1$
$3 x^{2}-4 y^{2}=12$
$\frac{x^{2}}{28}+\frac{y^{2}}{21}=1$
$\frac{x \cdot 4}{28}+\frac{y \cdot 3}{21}=1$
$\frac{3 x^{2}}{12}-\frac{4 y^{2}}{12}=1$
$\frac{x^{2}}{4}-\frac{y^{2}}{3}=1$
$\frac{x \cdot 4}{4}-\frac{y \cdot 3}{3}=1$
$x-y=1$
$y=x-1$
$k_{2}=1$
$x+y=7$
$y=-x+7$
$k_{1}=-1$

We can use the formula for the angle between two lines: $\operatorname{tg} \alpha=\left|\frac{k_{2}-k_{1}}{1+k_{1} \cdot k_{2}}\right|$, but we can immediately conclude that the cut angle is 90°.

How?

Well we know that the condition of normality is $k_{1} \cdot k_{2}=-1$, and this is obviously satisfied!

